Core Topic 2

The immune system and how vaccines work
Learning outcome

To be able to describe in outline the immune system and how vaccines work in individuals and populations
Learning objectives

• Explain the difference between innate, passive and active immunity
• Describe the basic immune response to a vaccine
• Describe herd immunity and explain why it is important
• List conditions that affect the immune response to vaccines
Basic immunology
Immune response to vaccination

Aim of an ideal vaccine:

• To produce the same immune protection which usually follows natural infection but without causing disease

• To generate long-lasting immunity

• To interrupt spread of infection
Immune system: Innate (natural) immunity

Physical barriers - skin and mucous membranes

Physiological factors - pH, temperature and oxygen tension limit microbial growth

Protein secretions – lysozyme, complement, interferons etc

Phagocytic cells – macrophages and polymorphonuclear leucocytes

Defining characteristic: No memory persists afterwards
Adaptive immunity

The second level of defence

Increases in strength and effectiveness with each encounter

The foreign agent is recognised in a specific manner and the immune system acquires memory of it

Adapted from illustration by Nick Holmes
What is an antigen?

An antigen is defined as "anything that can be bound by an antibody“

Antibodies interact specifically with relatively small parts of molecules. These are known as antigenic determinants or epitopes

Small antigens are referred to as haptens. They are not immunogenic and need to be coupled to a carrier to elicit an immune response
Cellular components of immune response

Antigen presenting cells (eg. macrophages)

T cells
respond to many epitopes
Tc cytotoxic - direct lysis of target cells
Th helper - help B, T cells and macrophages

B cells
Make antibody (IgG, IgM, IgA, IgD, IgE)
Memory cells

With kind permission from Nick Holmes
Antibody

• Is produced to one specific epitope
• Neutralises toxins
• Block adhesion/cell entry
• Kills via complement
• Neutralises viral infectivity and prevents replication
• Different types of antibody: IgM, IgG, IgA, IgE

With kind permission from Nick Holmes
Actions of antibody

Neutralisation
Block biological activity of target molecule e.g a toxin binding to its receptor

Opsonisation
Interact with special receptors on various cells, including macrophages, neutrophils, basophils and mast cells allowing them to "recognise" and respond to the antigen

Complement Activation
Cause lysis by complement, also enhancing phagocytosis

With kind permission from Nick Holmes
Primary immune response develops in the weeks following first exposure to an antigen.

- Mainly IgM antibody

Secondary immune response is faster and more powerful.
- Predominantly IgG antibody
More complexity…

Immune system has to distinguish “self” from “non-self”

Major Histocompatibility Complex (MHC) Class II antigens (“self”) important for recognition of antigen by T helper cells

Communication between different immune cells is by a range of chemical messages, “cytokines”, which include interleukins and interferon

With kind permission from Nick Holmes
Innate and adaptive immunity work together

Cytokines and NK cells combine to provide early defense against virus infections

With kind permission from Nick Holmes
Immune response to an ideal vaccine: summary

Vaccine is taken up by antigen-presenting cells
 • activates both T and B cells to give memory cells
 • generates Th and Tc cells to several epitopes
 • antigen persists to continue to recruit B memory cells and produce high affinity antibody
Immunology and understanding policy and practice

A basic understanding of immunology helps explain

• How vaccine failure occurs
• Adverse events
• Intervals between vaccines
• Why vaccines can't overload the immune system
• Timing of adverse events
Gaps needed between each dose of vaccine

To allow each immune response to develop – eg primary immunisation (1 month)

This allows the next response to be a true secondary response – ie faster and bigger and with higher affinity IgG

To avoid immune interference

If another live vaccine is given while the immune system is making a primary immune response, the activation of the innate immune system may neutralise the second live vaccine so that it does not work. Hence we wait 4 weeks to allow the immune system to recover

Human normal immunoglobulin contains antibodies to many infections including measles. These antibodies will neutralise any live vaccine. Hence we wait 3 months for the antibody level to fall
Can vaccines overload the immune system?

The bacteria in our bodies outnumber our own cells. The human body is composed of 10 trillion cells and contains 100 trillion bacteria.

On average there are:
- 1000 bacteria on each cm2 of your skin
- 1,000,000 bacteria on each cm2 of your scalp
- 100,000,000 bacteria per gram of saliva
- 10,000,000 bacteria per gram of nasal mucus*

The maximum number of antigens in a UK vaccine was \sim3000 (DTwP, most from wP) – with the new vaccines this number is much lower still.

*The Human Immune System: Schoolscience Website
http://www.schoolscience.co.uk/content/4/biology/abpi/immune/immune3.html
Do vaccines overload the immune system?

Within hours of birth, a baby’s gastrointestinal & respiratory tract are heavily colonised with bacteria

Rather than overwhelming the immune system, vaccines help stimulate and strengthen it

Immune systems need stimulation to develop well: allergies may result from too little immune stimulation in our cleaner environments

There is no evidence that vaccines can overload the immune system. The immune system is designed to deal with a constant stream of foreign antigens on the surface and inside our bodies.
Vaccine failures

Primary failure
an individual fails to make an adequate immune response to the initial vaccination (e.g. in about 10% of measles and mumps vaccine recipients)

Secondary failure
an individual makes an adequate immune response initially but then immunity wanes over time (a feature of most inactivated vaccines, hence the need for boosters)
Timing of Vaccine Reactions

Inactivated vaccines: generally within 48hrs following vaccination

Live vaccines: occur according to time taken for virus to replicate

e.g. MMR vaccine:
reactions to measles component (malaise, fever, rash) tend to occur in 1st week following vaccination
reactions to rubella component (pain, stiffness or swelling of joints) tend to occur in 2nd week following vaccination
reactions to mumps component (parotid swelling) tend to occur in 3rd week following vaccination (although may occur up to 6 weeks following vaccination)
Adverse events

Live vaccines: frequency of adverse events falls with number of doses

E.g. MMR

If antibody is made in response to live vaccine, it neutralises the small amount of vaccine virus in any subsequent vaccine dose.

Inactivated vaccines: frequency of adverse events increases with number of doses

E.g. tetanus, pertussis

If antibody levels are good following previous vaccination, the antibody binds to the vaccine antigen in a subsequent dose of vaccine, produces a good secondary immune response which, if big enough, is inflammatory (i.e. produces a sore arm).
Susceptible populations

- Any person who is not immune to a particular pathogen is said to be susceptible
- Not all individuals are able to produce an immune response
- Not all individuals can be given certain vaccinations
- Susceptibility can be caused by immune suppression or deficiency as a result of drugs or certain conditions
Conditions Which May Affect or Contradict Vaccination

• Primary immunodeficiency
• Standard and intensive chemotherapy
• Haemopoietic stem cell transplant
• Solid organ transplant
• Systemic corticosteroid use
• Immunosuppressive drug therapy
• HIV infection
• Other conditions

These headings are taken from “Immunisation and the Immunocompromised Child” Royal College of Paediatrics and Child Health Best Practice Statement (Feb 2002).
Severity of infection depends upon age

- Death (measles, pertussis)
- Clinical manifestations (polio)
- Latent infection (hepatitis B)
- Fetal infection (rubella)
Herd immunity
Herd immunity

Herd immunity only applies to diseases which are passed from person to person.

For each disease there is a certain level of immunity in the population which protects the whole population because the disease stops spreading in the community.

A disease can therefore be eradicated even if some people remain susceptible.

Herd immunity provides indirect protection of unvaccinated as well as vaccinated individuals. This may be the most important aspect of how they work. For example, MMR given to infants protects pregnant women from rubella.
Definitions

Herd immunity is best thought of as a threshold

It is measured by the “reproduction number”

This is the average number of new people infected by each infectious case

Basic reproduction number, \(R_0 \)

The number of secondary infections produced by a typical infective in a totally susceptible population

Effective reproduction number, \(R \)

The number of secondary infections produced by a typical infective

Takes account of the fact that some people are already immune because of previous infection or vaccination
Effective Reproduction Number, R

If R>1 the number of cases increases
If R<1 the number of cases decreases
To achieve elimination need to maintain R < 1
Conclusions

Control of infectious diseases through vaccination requires an understanding of the natural history and biology of the infection and the immune response.

For most infections we cannot protect all children effectively without herd immunity.

Many queries can be answered by reference to basic principles about the mode of action of inactivated and/or live vaccines.
Minimum slide set created by:

Immunisation Department,
Centre for Infections,
Health Protection Agency

to assist teaching of the Core Curriculum for Immunisation Training

(see http://www.hpa.org.uk/infections/topics_az/vaccination/training_menu.htm)

Illustrations used with kind permission from Nick Holmes, Division of Immunology, Department of Pathology, Cambridge University.